DSL

VAMA
Scene Understanding Guide

Overview

Scene understanding is essential for Autonomous Mobile Robots (AMRs) to carry out their
jobs. For instance, for AMRs to enter the lifts given that there are passengers coming out
and going in. The AMRs without scene understanding will attempt to enter lifts with lidar
which is auto avoidance to object collision. After avoiding the passengers, there may not be
vacant space in the lift for the AMRs. The AMRs would give up after several attempts to
enter the lift. The whole process is not intuitive. By leveraging computer vision, AMRs would
be able to see when is the right time to enter the lift and whether there is enough space for

them.

On the other hand, AMRs could be deployed for specific purpose, for example in fighting
CoVid-19. In that case, the following AMRs are being considered:

* chemical disinfectant robot
+ UV-light disinfectant robot

* Social distancing compliance robot

Chemical and UV-light disinfectant robots should only be deployed when human is not
around. Both chemical and UV-light are harmful to human. In this scenario, human
detection is crucial. The AMRs have to trip the chemical spearing or UV-light once any
human is detected near to the proximity. For social distancing compliance, the AMRs act

like the officers, reminding the crowd to maintain social distance and put on the masks.

Scene understanding allows developers to easily integrate vision detection features within

VAMA framework. The detections include
* Elevator entry indication
* Human and face detection
* Human distance projection

* Face mask detection

APl Guides

Elevator Entry Indication

POST https://vama.dsldemo.site/v1/sceneunderstanding/liftentry/api

Request JSON body
{

"requests": [
{

"features": [

{
"type": "ENTER LIFT"

}

1,

"video": {
"uri": "rtsp://hostip/to/videostream"

Response example

{
"ENTER_ELEVATOR": {
"indicator": "Go/No-Go/Halt",
by
"HUMAN_DETECTION": {
"boundingPoly": {
"normalizedVertices": [
{
"x": 0.46406767,
"y": 0.87452173,
"width": 0.32457321,
"height": 0.67452179,
"score": 0.90772167

1
b
"name": "ELEVATOR",

https://vama.dsl.com/v1/sceneunderstanding
https://vama.dsldemo.site/v1/sceneunderstanding/liftentry/api

Human detection

POST https://vama.dsldemo.site/v1/sceneunderstanding/humandetection/api

Request JSON body
{

"requests": [
{
"features": [

{

"maxResults": 50,
"min height": 20,
"min width": 20,
"score th": 0.2,

"nms iou": 0.3,
"type": "HUMAN DETECTION"
}
] 14
"image": |
"content": "baset64-encoded-image"

}

Response example

{
" HUMAN DETECT ION": {
"boundingPoly": {
"normalizedVertices": [
{
"x": 0.46406767,
"y": 0.87452173,
"width": 0.32457321,
"height": 0.67452179,
"score": 0.93772167

x": 0.5672081,

"y": 0.87452173,
"width": 0.27457373,
"height": 0.57452121,
"score": 0.95882109

]
}y

"name": "Human"

https://vama.dsl.com/v1/sceneunderstanding
https://vama.dsldemo.site/v1/sceneunderstanding/humandetection/api

Human Distance Projection

Camera Calibration Service

https://vama-app.dsldemo.site/v1/sceneunderstanding/calibration/

A frontend interface for camera calibration service is developed for users to
upload calibration images. The following three camera parameters will be
returned for use in the Human Distance API.

"Fx": 813.28213542715¢,
"Fy": 815.3081525954702,
"centerX": 301.67078604964340,

Human Distance API

POST https://vama.dsldemo.site/v1/sceneunderstanding/humandistance/api

Request JSON Body
{

"requests": [
{
"features": [
{
"minScore": 0.3,
"MinDistance": 100,
"Fx": 823,
"Fy": 825,
"centerX": 323,
"type": "HUMAN DISTANCE"
}
] 14
"image": {
"content": "base64-encoded-image"

}

https://vama-app.dsldemo.site/v1/sceneunderstanding/calibration/
https://vama.dsl.com/v1/sceneunderstanding
https://vama.dsldemo.site/v1/sceneunderstanding/humandistance/api

Response example

{
"HUMAN DETECTION": {
"boundingPoly": {
"normalizedVertices": [
{

"id":0,
"x": 0.46406767,
"y": 0.87452173,
"width": 0.32457321,
"height": 0.67452179,
"score": 0.93772167

{
"id":1,
"x": 0.5672081,
"y": 0.87452173,
"width": 0.27457373,
"height": 0.57452121,
"score": 0.95882109
}I
{
"id":2,
"x": 0.7637053,
"y": 0.28956301,
"width": 0.17457373,
"height": 0.77452121,
"score": 0.8569042
}
]
}I
"name": "Human"

}I
"HUMAN_DISTANCE": {
"humanNum": 3,
"distancesMatrix": [
[0.000000, 139.0871, 208.7654],
[139.0871, 0.000000, 118.00347],
[208.7654, 118.0034, 0.000000]

Legends

"Fx": 813.282135427156, // Focal length in horizontal axis
"Fy": 815.3081525954702, // Focal length in vertical axis
"centerX": 301.6707864964346,// camera center in horizontal axis

"minScore": 0.3, // human detection confidence score
"distance": 100, // distance (cm) between human
"Fx": 823, // Focal length in horizontal axis
"Fy": 825, // Focal length in vertical axis
"centerX": 323, // camera center in horizontal axis(pixel)
"type": "HUMAN DISTANCE"

}

"distancesMatrix": [
[0.000000, 139.0871, 208.7654], // Distance matrix is in cm

[139.0871, 0.000000, 118.0034],
[208.7654, 118.0034, 0.000000]

10

Face detection

POST https://vama.dsldemo.site/v1/sceneunderstanding/facemaskdetection/api

Request JSON body
{

"requests": [
{

"features": [

{

"maxResults": 50,

"type": "FACE DETECTION"
}
] 14
"image": |
"content": "baset64-encoded-image"

}

Response example

{
"FACE DETECTION": ({
"boundingPoly": {
"normalizedVertices": [
{
"x": 0.56406767,
"y": 0.87452173,
"width": 0.22457321,
"height": 0.24452179,
"score": 0.97772167

"x": 0.6672081,

"y": 0.87452173,
"width": 0.17457373,
"height": 0.18452121,
"score": 0.98882109

]
}y

"name": "Face"

11

https://vama.dsl.com/v1/sceneunderstanding
https://vama.dsldemo.site/v1/sceneunderstanding/facemaskdetection/api

Face Mask Detection

POST https://vama.dsldemo.site/v1/sceneunderstanding/facedetection/api

Request JSON body
{

"requests": [
{

"features": [

{

"maxResults": 20,

"type": "FACEMASK DETECTION"
}
]l
"image": |
"content": "baset64-encoded-image"

}

Response example

{
"FACE MASK DETECTION": [
{
"boundingPoly": {
"normalizedVertices": [
{

"x": 0.46406767,
"y": 0.47452173,
"width": 0.32452173,
"height": 0.27452173,
"score": 0.98216777

"x": 0.8672081,

"y": 0.57452173,
"width": 0.27752173,
"height": 0.27452173,
"score": 0.99772167

]
by

"name": "Face Mask"

}y

"boundingPoly": {
"normalizedVertices": [

12

https://vama.dsl.com/v1/sceneunderstanding
https://vama.dsldemo.site/v1/sceneunderstanding/facedetection/api

"x": 0.66406767,
"y": 0.57452173,

"width": 0.30452173,
"height": 0.26452173,
"score": 0.95216777

]
by

"name": "No Face Mask"
}
]
}
Legends
"normalizedVertices": [

{
"x": 0.46406767,
"y": 0.87452173,

"width": 0.32457321,
"height": 0.67452179,
"score": 0.90772167

13

// x_ori / width ori

// y ori /height ori

// bbox width / width ori
// bbox_height / height ori
// confidence scores are in

descending order

Installation & Deployment

Prerequisite Software Installation

Docker

Follow the official installation guide based on the OS of the machine. You may consider to

install Nginx and configure it to host multi workers for a particular container and do

reverse proxy.

TLDR

Each APl is containerized using Docker. To deploy the API for any of the following container,

e maskdetection
e humandetection
e humandistance

e elevatorentry,
follow the following steps:

e Build the docker container, go to the folder which contain Dockerfile
o docker build -t maskdetection .

e Run the docker. Inside each folder, it contains the run.sh file
o docker run -d -p 80:80 maskdetection

e Access the website using the web browser: http://localhost

e There is Python example code how to call the REST API in the html page

14

https://docs.docker.com/engine/install/

API Deployment in Details

1. In the terminal, navigate to the main folder containing the Dockerfile file.

2. In the terminal, enter
$ sudo docker build -t [imagename]

This builds a docker image of the flask application. Note that imagename can be any name
that you assign to it. The dot (.) following it refers to the path to the Dockerfile, which in this

case, is the current folder.

3. Next, run the image as a container.

$ sudo docker run -d -p host port:container port --name

[containername] [imagename]

containername refers to the name you want to assign for the container. -d refers to
running the container in the background instead of foreground. -p

host port:container port refersto the port that the host maps with the container’s
port. An example will be -p 5001:5000. Note that the flask app’s port running in the
container is by default set to the default 5000.

4. To check that the container is running.
$ sudo docker ps

It should show something like this.

(base) $ docker ps

[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0639ch74e99c imagename "python —u app.py" 10 seconds ago Up 9 seconds ©.0.0.0:5001->5000/tcp containername

5. The APl endpointis set as /api (this can be modified in the app/app . py file). To test
that the API is working, use the URL of your hostname:hostport/api. Taking the

example in step 4, and the host as localhost, it will be 1ocalhost:5001/api

15

The request to be sent to this API needs to adhere strictly to the API Guidelines for each
module specified in the previous section. Below is an example of how to send a request

using python v3 for facemask detection.

from urllib.request import urlopen, Request
import argparse

import base64

import json

def SendImageToSceneUnderstandingServer (url, Imagefile):
with open (Imagefile, 'rb') as image:
base64 bytes = basetd4.bb6dencode (image.read())

data = {}
request = {}
feature {}
myimage {}
features list = [

requests list = [

myimage['content'] = base64 bytes.decode('utf-8')
request['image'] myimage
feature['maxResults'] = 20

feature['type'] = 'FACEMASK DETECTION'
features list.append (feature)
request['features'] = features list

requests list.append(request)

data['requests'] = requests list

]
]
]

params = json.dumps (data) .encode ('utf8"')

req = Request (url, data=params, headers={'content-type':
'application/json'})

response = urlopen (req)

json response = response.read()

print ("\nRequest: %$s" %$Imagefile)
print ("Response: %s" %json_response)

J = Json.loads (json_ response)
return j

G o
parser = argparse.ArgumentParser (description=_doc ,

formatter class=argparse.RawDescriptionHelpFormatter)
parser.add argument ('Imagefile', help='Image File location')

args = parser.parse args()

Imagefile = args.Imagefile

url = 'localhost:5001/api’
SendImageToSceneUnderstandingServer (url, Imagefile)

16

