
Open-Sourced KALDI Automated Speech Recognition (ASR) Engine

This documentation provides a general description on the structure of the KALDI ASR engine, with

features, design, the types of algorithms used and overview of the engine for better understanding.

FEATURES

KALDI automatic speech recognition framework consist of the following features:

- Finite-state transducers (FST), compiled against the OpenFst toolkit using it as a library.

- Extensive linear algebra support, matrix library that wraps standard BLAS and LAPACK

routines.

- Extensible design, algorithms are provided in the most generic form.

- Open license, Licensed under Apache v2.0.

ACOUSTIC MODELING

The following conventional models (i.e. diagonal GMMs) and Subspace Gaussian Mixture Models

(SGMMs) were used. GMMs are the foundation before going into Deep Neural Network (DNN)

model training. For DNN acoustic model training, we use Time Delayed Neural Network (TDNN) and

unidirectional Long Short Term Memory (LSTM). These combinations of TDNN and LSTM results in

low latency of acoustic modelling.

A. Diagonal and full covariance Gaussian Mixture Models (GMMs)

B. GMM-based acoustic model

C. HMM Topology

D. Speaker Adaptation that supports speaker normalization using a linear approximation to

VTLN, similar to, or conventional feature-level VTLN, or a more generic approach for

gender normalization, “exponential transform”.

E. Subspace Gaussian Mixture Models (SGMMs)

F. Time Delayed Neural Network (TDNN)

G. Unidirectional Long Short Term Memory (LSTM)

LANGUAGE MODEL (LM)

KALDI uses an FST-based framework. The SRILM toolkit were used for LM pruning, when

building LMs from raw text, users may use the SRILM toolkit.

DECODERS

A C++ class that handles the core decoding algorithm, the decoders do not require a particular type

of acoustic model: they need an object satisfying a very simple interface with a function that

provides some kind of acoustic model score for a particular (input-symbol and frame).

class DecodableInterface {

 public:

 virtual float LogLikelihood(int frame, int index) = 0;
 virtual bool IsLastFrame(int frame) = 0;
 virtual int NumIndices() = 0;
 virtual ˜DecodableInterface() {}

};

ONLINE DECODING

GMM-based online-decoding procedure were used for easy evaluate word error rates. The inner

decoder object, LatticeFasterDecode takes the decoding graph (as a FST), and the decodable object.

The OnlineFasterDecoder setup has the ability to work out which words are going to be “inevitably”

decoded regardless of what audio data comes in future. This setup is useful for online-transcription

context.

Neural network based online decoding with iVectors is used. It is based on the foundation of GMM-

based decoding. To be exact, we use online decoding with nnet3 models, which supports forward

recurrent models such as LSTM. The online decoder online2-wav-nnet3-latgen-faster is used to

transcribe wav file to its corresponding text.

FEATURE EXTRACTION

The feature extraction support most commonly used approaches such as VTLN, cepstral mean and

variance normalization, LDA, STC/MLLT, HLDA, and so on.

In online-feature.h, classes are available for various components of feature extraction. All

components inheriting from class OnlineFeatureInterface. OnlineFeatureInterface is a base class for

online feature extraction. The interface specifies how the object provides the features to the caller

(OnlineFeatureInterface::GetFrame()) and how it says how many frames are ready

(OnlineFeatureInterface::NumFramesReady()), but does not say how it obtains those features. That

is up to the child class.

In online-feature.h we define classes OnlineMfcc and OnlinePlp which are the lowest-level features.

They have a member function OnlineMfccOrPlp::AcceptWaveform(), which the user should call

when data is captured. All the other online feature types in online-feature.h are "derived" features,

so they take an object of OnlineFeatureInterface in their constructor and get their input features

through a stored pointer to that object.

The only part of the online feature extraction code in online-feature.h that is non-trivial is the

cepstral mean and variance normalization (CMVN) (and note that the fMLLR, or linear transform,

estimation is not trivial but the complexity lies elsewhere). We describe the CMVN below.

https://kaldi-asr.org/doc/classkaldi_1_1OnlineFeatureInterface.html#a7ee271dbb4707753e1ee4b0aa45eae37
https://kaldi-asr.org/doc/classkaldi_1_1OnlineFeatureInterface.html#a6d4812ed73de799c457bea7f483f3593
https://kaldi-asr.org/doc/online-feature_8h.html
https://kaldi-asr.org/doc/classkaldi_1_1OnlineFeatureInterface.html
https://kaldi-asr.org/doc/online-feature_8h.html

CEPSTRAL MEAN AND VARIANCE NORMALIZATION IN ONLINE DECODING

In the Kaldi scripts, cepstral mean and variance normalization (CMVN) is performed on per-speaker

basis. In an online-decoding context, it is not possible for "non-causal" speech.

Hence, "moving-window" cepstral mean normalization by accumulating the mean over a moving

window of 6 seconds. The class for computing, OnlineCmvnOptions, also has extra configuration

variables such as speaker-frames (default: 600ms) and global-frames (default: 200ms). To specifically

state the duration on the use to prior information from the same speaker. This improves the

estimation for the first few seconds of each utterance. The program apply-cmvn-online can apply

normalization as part of a training pipeline for training on matched features.

ADAPTATION IN ONLINE DECODING

The most commonly adaptation method used for speech recognition is feature-space Maximum

Likelihood Linear Regression (fMLLR) or Constrained MLLR (CMLLR).

The fMLLR consists of the following mathematical parameters:

 Affine (linear + offset) transform of the features,

 the number of parameters is d * (d+1), where d is the final feature dimension (typically

40).

The top-level logic for this at the decoder level is mostly implemented in

class SingleUtteranceGmmDecoder. To incrementally estimate an increasing number of transform

parameters as we decode more data.

The fMLLR perform estimation periodically and compute lattice posteriors. The

OnlineGmmDecodingAdaptationPolicyConfig class determine when to re-estimate fMLLR. On first

utterance, the default estimation period is after 2 seconds. The period increases geometrically at a

ratio with constant of 1.5 (e.g. 2 seconds, 3 seconds, 4.5 seconds, etc). Any later utterances

estimation starts after 5 seconds, 10 seconds, 20 seconds and so on. For all utterances we estimate

it at the end of the utterance.

ONLINE DECODING WITH nnet3 MODELS

Nnet3 models were used in the current KALDI decoding model, for more information on the older

model, nnet2. Please visit the link https://kaldi-asr.org/doc/online_decoding.html for more

information. In Kaldi 5.1 and later, online nnet3 decoding supports "forward" recurrent models such

as LSTMs, but not bidirectional ones like BLSTMs. In addition, online nnet3 decoding with recurrent

models may not give optimal results unless you use "Kaldi-5.1-style" configuration, including the

"decay-time" option and specifying –extra-left-context-initial 0.

https://kaldi-asr.org/doc/structkaldi_1_1OnlineCmvnOptions.html
https://kaldi-asr.org/doc/apply-cmvn-online_8cc.html
https://kaldi-asr.org/doc/classkaldi_1_1SingleUtteranceGmmDecoder.html
https://kaldi-asr.org/doc/online_decoding.html
https://kaldi-asr.org/doc/namespacekaldi_1_1nnet3.html
https://kaldi-asr.org/doc/namespacekaldi_1_1nnet3.html

KALDI Engine Overview

Two external libraries that are freely available: OpenFst for finite-state framework, the other is

numerical algebra libraries. The standard algebra libraries used was “Basic Linear Algebra

Subroutines” (BLAS) and “Linear Algebra PACKage” (LAPACK) 2 (refer to Fig 1).

Fig 1. A simplified view of the different components of Kaldi.

The library modules can be grouped into those that depend on linear algebra libraries and those that

depend on OpenFst. The decodable class bridges these two halves. Modules that are lower down in

the schematic depend on one or more modules that are higher up.

BLA/LAPACK OpenFST

External Libraries

Matrix

Transforms

Kaldi C++ Library

Utils

Feat GMM SGMM

TDNN LSTM

LM Tree FST ext

HMM

Decodable
Decoder

Kaldi C++ Executables

(Shell) Scripts

